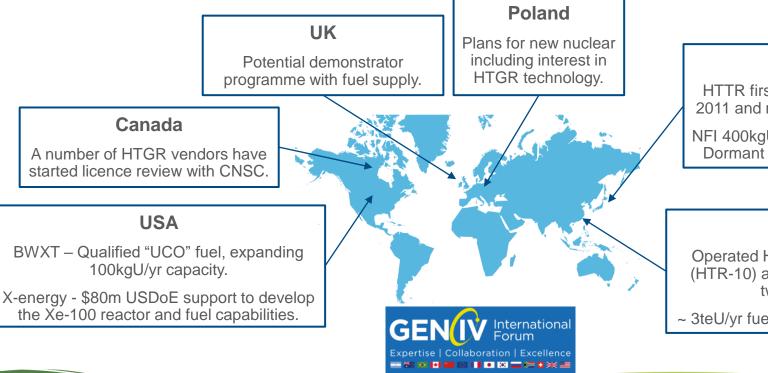


Coated Particle Fuel – The context and Kernel Manufacture Nick Barron

- Coated Particle Fuels (TRISO fuels) are a specific type of fuel used in High Temperature Gas cooled Reactors (HTGRs).
- Fuel is extremely robust enabling high operating temperatures which:
 - Increases efficiency of electricity generation
 - Permits high outlet temperatures suited to co-generation (e.g. H₂ production)
- Particle fuel technology is mature
 - First used in Dragon Reactor in 1964
- HTGRs selected by government as preferred technology for AMR demonstration


	1965-69	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-9	2010-14	2015-19	2020-21
Dragon Reactor, UK												
Peach Bottom, US												
Fort St. Vrain, US												
AVR, Germany												
THTR, Germany												
HTTR, Japan												
HTR-10, China												
HTR-PM, China												

International Interest

Japan

HTTR first operated 1998-2011 and re-started in 2021.

NFI 400kgU/yr fuel capability. Dormant since circa 2006.

China

Operated HTGRs since 2000 (HTR-10) and 2020 (HTR-PM twin unit).

~ 3teU/yr fuel capability at Batou.

Our work

- Develop UK capabilities and expertise through operation of *"engineering"* scale facilities to:
 - ensure UK can be an intelligent customer to commercial fuel supply propositions; and/or
 - develop a UK fuel supply sufficient for a small demonstrator core (de-risk demo programme) and support domestic suppliers as they scale-up to build commercial supply.
- Innovate to improve production methods
- Support UK supply chain to realise scaleup opportunities

Our team

Kernel Manufacture

Our work

- Casting
 - Lab scale capabilities operation at NNL Preston and Lancaster University with research ongoing to optimise
 - Active commissioning of "engineering scale" capability
 - Alternative routes under development at Bangor
- Washing and Drying
 - Research ongoing to enhance efficiency of process

Gelation spheres - 2 00 mm

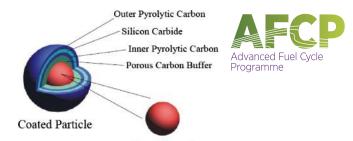
• Active commissioning of "engineering scale" capability

Dried ADU kernels - 1.00 mm

Silicon Carbide Inner Pyrolytic Carbon Porous Carbon Buffer Coated Particle Fuel Kernel Fuel Kernel Fuel Sernel

Outer Pyrolytic Carbon

Kernel Manufacture


Our work

- Calcining
 - Optimisation ongoing to support operation of "engineering scale" capability

- Reduction and Sintering
 - Established technique in-place
 - Innovations also being supported "Flash Sintering"
- Quality Assurance

Fuel Kernel

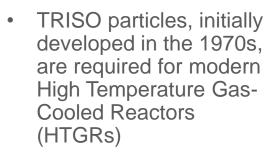
Fluidised Bed Chemical Vapour Deposition in CPF manufacture

Mathieu Delmas

Our work

- ATL, specialists in Chemical Vapour Deposition (CVD) for 40 years
- Involved in many materials research programmes for nuclear fusion & fission
- Building a new CVD reactor to coat uranic kernels to manufacture TRISO particles that will aid the enhancement of domestic understanding of this process

Our team



Find more about ATL at www.cvd.co.uk

Kernel coating via FB-CVD

Context

- Beyond clean energy applications, they are also under consideration for other nuclear projects
 - Space
 - Thermal nuclear propulsion

Kernel coating via FB-CVD

Highlights & Impact

- Pilot reactor nearing completion and FAT schedule confirmed
- First fluidised bed reactor built by ATL
- Various technical challenges solved (access to load/unload crucible, safety containment for any stray UO₂ kernels, etc.).
- System able to apply 4 layers of 3 different coating types in one continuous batch
 - Carbon and SiC
- Fitted with many measurement tools to improve the process and its understanding
 - Sampling probes, thermocouples, camera

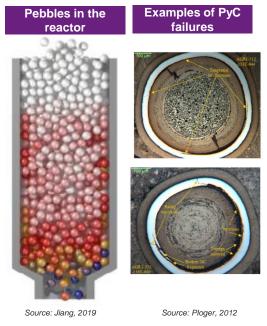
Department for Business, Energy & Industrial Strategy

Kernel coating via FB-CVD

Matrix Graphite and Pyrocarbon (PyC) Materials in Coated Particle Fuels Nassia Tzelepi

Our work

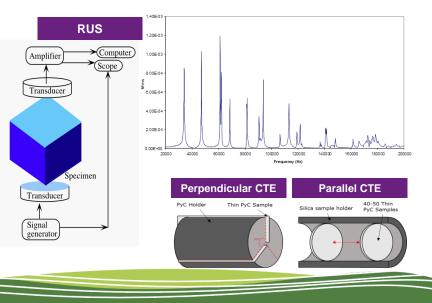
- Graphite matrix: the material in which the coated particles are embedded to produce spherical (pebbles) or cylindrical (compacts) fuel elements
- Pyrocarbon: The buffer, IPyC and OPyC layers used in coated particles to protect the fuel kernel and the SiC layer
- Key challenges:
 - Limited available data of properties that affect fuel performance
 - Properties depend on manufacturing process
 - Micro-size of buffer and PyC samples
- Two main objectives:
 - Understand manufacturing parameters that affect fuel performance
 - Provide new data representative of the UK fuels


Matrix Graphite and Pyrocarbon (PyC) Materials in CPF

Context

- Graphite Matrix: Moderator and main structural material
- Pyrocarbon: Protective layers for the fuel kernel and the SiC (pressure vessel)
 - accommodating fission gas pressure and kernel swelling
 - providing chemical, thermal and mechanical stability barriers
- Manufacturing parameters affect the properties of the asmanufactured material
- All properties change under irradiation
- Good understanding is required to manufacture high quality and reliable fuel pebbles/compacts
- However, the UK has unparalleled experience and capability in nuclear graphite that can be extended to satisfy the requirements of AFCP

Matrix Graphite and Pyrocarbon (PyC) Materials in CPF



Highlights & Impact

- Reports
 - Graphite Matrix for TRISO Fuel: Review of Properties and Production Methods
 - Stress, Strain, and Slicing: Stress Redistribution caused by Hemisection of a Spherical Shell
 - Stresses and Strains in Spherical Shells Part 2: Analysis of Irradiation Creep
 - Review of TRISO-Relevant Pyrolytic Carbon Properties
 - Review of Measurement Techniques for Micro-sized Samples
- Experimental: Development of measurement techniques for micro-sized PyC samples
 - Sample preparation/machining
 - Mensuration
 - Elastic moduli (Resonant Ultrasound Spectroscopy (RUS))
 - Coefficient of Thermal Expansion (CTE)

- Excellent collaboration with UoB
 - Comparison of NNL theoretical analysis of stresses in manufactured and irradiated PyC layers with UoB residual stress measurement

Matrix Graphite and Pyrocarbon (PyC) Materials in CPF

